Package: SAGMM 0.2.4

SAGMM: Clustering via Stochastic Approximation and Gaussian Mixture Models

Computes clustering by fitting Gaussian mixture models (GMM) via stochastic approximation following the methods of Nguyen and Jones (2018) <doi:10.1201/9780429446177>. It also provides some test data generation and plotting functionality to assist with this process.

Authors:Andrew T. Jones, Hien D. Nguyen

SAGMM_0.2.4.tar.gz
SAGMM_0.2.4.zip(r-4.5)SAGMM_0.2.4.zip(r-4.4)SAGMM_0.2.4.zip(r-4.3)
SAGMM_0.2.4.tgz(r-4.4-x86_64)SAGMM_0.2.4.tgz(r-4.4-arm64)SAGMM_0.2.4.tgz(r-4.3-x86_64)SAGMM_0.2.4.tgz(r-4.3-arm64)
SAGMM_0.2.4.tar.gz(r-4.5-noble)SAGMM_0.2.4.tar.gz(r-4.4-noble)
SAGMM_0.2.4.tgz(r-4.4-emscripten)SAGMM_0.2.4.tgz(r-4.3-emscripten)
SAGMM.pdf |SAGMM.html
SAGMM/json (API)
NEWS

# Install 'SAGMM' in R:
install.packages('SAGMM', repos = c('https://andrewthomasjones.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/andrewthomasjones/sagmm/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3

On CRAN:

2.70 score 3 scripts 114 downloads 1 mentions 3 exports 6 dependencies

Last updated 5 years agofrom:e115eb70d9. Checks:OK: 1 NOTE: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 31 2024
R-4.5-win-x86_64NOTEOct 31 2024
R-4.5-linux-x86_64NOTEOct 31 2024
R-4.4-win-x86_64NOTEOct 31 2024
R-4.4-mac-x86_64NOTEOct 31 2024
R-4.4-mac-aarch64NOTEOct 31 2024
R-4.3-win-x86_64NOTEOct 31 2024
R-4.3-mac-x86_64NOTEOct 31 2024
R-4.3-mac-aarch64NOTEOct 31 2024

Exports:gainFactorsgenerateSimDataSAGMMFit

Dependencies:lowmemtkmeansMASSmclustMixSimRcppRcppArmadillo